パルス放電脱硝におけるラジカル濃度の測定と 計算予測

茨木 広*, 荒木 拓人, 恩田 和夫 (豊橋技術科学大学)

Measurement and Calculation of Radical Concentration at Pulsed Discharge DeNOx Process Hiroshi Ibaraki, Takuto Araki, Kazuo Onda (Toyohashi University of Technology)

1.はじめに

最近大気環境を更に改善するため、各種排ガスの規制が 強化されつつある。その中で、排ガス中の有害成分の一つ である NOx を効率良く、経済的に除去できる装置の開発が 進められている。その一つの技術としてパルス放電脱硝法 に期待が寄せられている。このパルス放電による脱硝法は 種々な研究機関で実験的にその脱硝性能が確認されている。 より効率的な放電プラズマの利用を進めるためには、生成 されるラジカルの挙動をより正確に把握する必要がある。 つまり、プラズマによるラジカルの生成過程や NOx との反 応経路を明らかにし、印加電圧などの運転条件を最適化し、 パルス放電脱硝法の実用化を目指す必要性がある。

これまで我々は、電界の大きさ、パルス幅の影響、ガス 組成、圧力、温度の影響を数値解析で調べ⁽¹⁾⁽²⁾、パルス放電 下で低圧プラズマ中のラジカル濃度を出現質量分析法で計 測し⁽³⁾、アンモニアなどの添加剤の効果を数値解析してきた ⁽⁴⁾。本研究は、平行した線・平板電極間に低圧力のパルス放 電を印加し、生成したラジカル濃度を出現質量分析法で測 定し、ラジカル生成の数値解析と比較することを目的とす る。なお、ここでは低圧力放電場においてプローブにより 電位分布を測定し、これを換算電界にして数値解析に用い、 実験結果と比較した。また直流放電場でラジカル濃度を測 定したので併せて報告する。

2.実験構成・方法

実験構成を図1に示す。実際のパルス放電脱硝は大気圧 下で行われるが、寿命の短いラジカルを質量分析計で計測 するため、実際のパルス脱硝場の換算電界に合わせて低圧 力場で実験した。模擬排ガス(N₂/O₂/CO₂/H₂O/NO/Ar =70.97/1/15/12/0.03/1%)を0.3Torr(40Pa)程度に減圧した 放電管内(円筒状:直径5cm×長さ40cm)に約200Ncc/min流 し、放電管内の平行した線・平板電極(SUS線径1mm、SUS 平板:幅2cm×長さ20cm、電極間隔2cm)に電圧を印加す る。この電極形状がこれまでの我々の研究とは異なり、こ れまでより強い電界が得られるようになった。電極間には ガス吸引プローブ(石英ガラス製)が設置されており、パルス 放電により生成したラジカルを含むガスを質量分析計 (QMS)内部に吸引する。吸引されたガスは電子シャワーによ リイオン化され、四重極電極で特定の質量電荷比を持った 化学種だけが分離・検出される。パルス放電時と非放電時の QMS 出力信号差と、Ar 濃度を基準としラジカルのイオン 化断面積を用いて、出現質量分析法によりラジカル濃度を 算出した。また、電極間の直流放電場でのプラズマ電位を 測定するため、先端以外はガラスで絶縁された直径 100μm のタングステン線を電極間に挿入し、ラングミュアプロー ブ法により電位を測定し、換算電界を求めた。ただし、パ ルス放電場ではプラズマ電位がラングミュアプロープで測 定できないため、浮遊電位を測定し、その電位差からパル ス放電時の換算電界を推定した。

図1 ラジカル濃度測定装置図

3.数值解析方法

<3.1>モデル 繰り返しパルス放電脱硝では、電子衝突過程などの早い反応と、化学反応過程などの遅い反応が 交互に繰り返し行われる。また、放電容器内で放電は非一様に進展するため、これらすべて考慮した解析は現状では 明らかにされていない。そこで、本解析では、排ガスが方 形波パルスに空間的に一様にさらされ、電子衝突と化学反応が空間に一様に進展すると仮定する。

電子衝突における反応速度 keは、ボルツマン方程式から

求まる電子のエネルギー分布関数と電子衝突断面積から算 出される。だが、ボルツマン方程式の計算は計算負荷が膨 大となるので、keを換算電界のみに依存すると仮定し、本 解析プログラム内で近似計算を行うようにした。また、本 解析には電子衝突過程と化学反応過程を合わせて 1543 個 の反応速度と化学種 169 種を考慮した。数値解析法は半陰 解法を用いている。

<3.2>解析条件 放電脱硝実験条件に準じてガスの初 期状態を N₂/O₂/CO₂/H₂O/NO/Ar=71/1/15/12/0.03/1%、温 度 T=323K、圧力 P=40Pa と与え、初期電子数密度を 10⁹ 個/m³とした。換算電界は実験より計算された値を用い、パ ルス幅は印加パルス幅に合わせて 150ns とした。

4.実験結果及び解析結果

図2 に直流放電場及びパルス放電場の電位分布測定結果 を示す。直流での実験及び解析は、直流放電の方がパルス 放電に比べてラジカル濃度が測定しやすいこと、浮遊電位 測定の傾向を見ることの両面から行った。測定は 1mm 間 隔の2本のプローブを用いて電極間1mm~19mmの範囲で 行った。電極間の印加電圧は、直流では-600V、パルスでは -3kV とした。測定結果より、直流放電ではラングミュアプ ローブ法により求めたプラズマ電位と浮遊電位がよく一致 した。またパルス放電でも同じような傾向を示した。この 結果から得た換算電界を用いて数値解析を行った。図 3、 図4に実測ラジカル濃度と数値解析による濃度を示す。ラ ジカル測定は線電極から1cmの位置で行い、印加電圧は電 位分布測定時と同じとした。直流放電解析は現在解析途中 なので途中までの結果を示している。測定の結果、直流、 パルスとも N ラジカルと O ラジカルが測定・計算できた。 OH ラジカルは濃度が負になってしまい適正な値とはいえ なかった。直流では、放電起源のN ラジカルO ラジカル平 均濃度はそれぞれおよそ 353ppm、295ppm となり、パル ス放電では N ラジカル O ラジカル平均濃度はそれぞれおよ そ 555ppm、90ppm となった。

図2 電位分布測定結果(直流、パルス)

図3 ラジカル濃度(パルス)

5.まとめ

パルス放電により生成されるラジカル濃度の測定及び計 算結果との比較を行った。解析に重要である換算電界を求 めるためにラングミュアプローブによる電位測定を行った。 直流放電でのプラズマ電位、浮遊電位は同じような傾向を 示し、解析結果とも1桁から2桁の差であった。パルスの 場合は浮遊電位を用いて換算電界を推定したが、実測値と 計算値では大きく値が異なった。直流放電の場合では1桁 から2桁の差であったのに対してパルスでは結果が大きく 異なった。現在、パルス放電実験での換算電界をどのよう に考えれば、解析値に近い値が得られるか、また測定位置 によるラジカル濃度の分布やラジカルの経時変化について 実験を進めているところである。

文 献

(1)	伊藤衡平、	荻原勝幸、	中浦裕之、	恩田和夫、	田中秀和、
	電気学会論	命文誌、Vol	.120-A,No.11	l,pp.979-986,	, 2000
(2)	伊藤衡平、	荻原勝幸、	中浦裕之、	恩田和夫、	田中秀和、
	雨生当るも		100 D M- 0	216 222 0	1002

- 電気学会論文誌、Vol.122-B,No.2,pp.216-222,2002 (3) 伊藤衡平、中浦裕之、漆畑正太、恩田和夫
- 電気学会論文誌、Vol.122-B,No.12,pp.1429-1435,2002 (4) 楠博敦、伊藤衡平、恩田和夫 電気学会論文誌、Vol.123-B,No.12,pp.1546-1553,2003